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Deep Space Network Receiving Systems’ Operating
Noise Temperature Measurements

C. T. Stelzried,1 R. C. Clauss,2 and S. M. Petty3

The operating noise temperature (Top) of radio frequency (RF) receiving systems
can be calculated using measured power ratios obtained when switching between
calibration loads at different temperatures. One method uses the Rayleigh–Jeans
(R-J) approximation to determine the noise temperature of the calibration loads
[4–6]. An exact calculation uses Planck’s radiation law [4–6]. We show that small
receiver (Te) and antenna (Ti) noise temperature errors resulting from the use of
the R-J approximation are self-compensating, and the simpler approximation can
be used with an insignificant Top error. The accuracy of Top, consisting of the
sum of the calibrated antenna noise temperature and the receiver noise tempera-
ture, is adequate using the simplified R-J approximation (physical temperature) at
frequencies as high as 100 GHz.

I. Introduction

The Deep Space Network (DSN) requires accurate system operating noise temperature calibrations
[1,2] for validating the low-noise performance needed for receiving weak signals from distant spacecraft.
A receiving system’s operating noise temperature in kelvins is given at a specified frequency by [3, p. 766]

Top =
No

kGs
(1)

where

No = output noise power spectral density, W/Hz

k = Boltzmann’s constant = 1.38065 × 10−23, J/K

Gs = delivered output power/input available signal power, ratio

and at a defined reference plane. Top is the sum of the source input and the receiver effective noise
temperatures:
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Top = Ti + Te (2)

where

Ti = input source (includes matched termination, load or antenna) noise temperature, K

Te = (receiver) effective input noise temperature, K

Ti and Te are defined at the same reference plane as Top. Te is generally measured using two loads
[2], replacing Ti in Eq. (2) with loads of known noise temperatures, as shown in Fig. 1(a). If the sky
temperature is known, one of the loads can be replaced with an antenna feed horn, usually pointed at
zenith. In this manner, Te can be calibrated using a single calibration load, usually an ambient aper-
ture load, as shown in Fig. 1(b); the antenna feed horn and sky serve as a cold calibration load. Also,
in principle, Te could be determined from knowledge of the receiver’s components and design. Knowing Te,
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Fig. 1.  Receiving systems’ block diagrams:  (a) receiver calibration
with hot and cold loads, (b) receiver calibration with hot (aperture)
and cold (sky) loads, and (c) operating system calibration with hot
load and known receiver noise temperature.
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Top can be evaluated by switching [1] between the sky and the hot load (usually an ambient load), as
shown in Fig. 1(c). DSN considerations and procedures for determining Ti, Te, and Top are as follows:

(1) The calibration load noise temperature is obtained assuming the Rayleigh–Jeans (R-J) low-
frequency approximation [4–6] and is equal to its physical (phy) temperature,

T ∼ TR-J
n = Tphy (3)

The noise power, in watts, in terms of the effective physical temperature is given by

Pn = NoB = kTB (4)

where B = bandwidth, Hz.

(2) The calibration load noise temperature is corrected in terms of the physical temperature,
T , by Planck’s law [4–6] at higher frequencies:

TPlanck
n =

hf

k

exp
(

hf

kT

)
− 1

(5)

where

h = Planck’s constant, 6.62607 × 10−34, J-s

f = frequency, Hz

Figure 2 shows Planck’s law noise-temperature ‘falloff’ as a function of frequency and tem-
perature. For a load at a physical temperature of 10 K, the noise temperature reduction is
0.24 K at 10 GHz and 2.21 K at 100 GHz. This suggests a possible need to apply Planck’s
law with DSN microwave systems’ calibration loads.

(3) Noise corrections with frequency using Eq. (5) are incorporated into the format of Eq. (4) for
fixed-frequency computations. The available thermal noise power from a load is calculated
using Eq. (4) with this high-frequency corrected noise temperature replacing the physical
temperature.

(4) Ti, Te, and Top are calculated with the measured power ratios (Y-factors) resulting from
switching between the hot (Th) and cold (Tc) calibrated loads and the system temperature
on the sky (Top), using for the noise temperatures of the calibrated loads either the R-J
low-frequency approximation, Eq. (3), or the more precise Planck corrected temperature,
Eq. (5).

We propose that the DSN use only the physical temperatures of the calibrated loads, not corrected with
Planck’s law for DSN operating frequencies. This simplified approach provides very accurate solutions
for Top with present and anticipated future DSN microwave frequencies and calibration loads.

The analysis of the accuracy of using the physical temperatures of the calibration loads without
Planck’s law correction assumes matched systems with linear receivers. Errors due to receiver and cali-
bration load mismatches and to receiver non-linearity are not addressed.
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Fig. 2. Calibration load noise (Tn 
) temperatures, showing the R-J (phys-

ical temperature) low-frequency (horizontal lines) approximation and
Planck’s law reduced output as functions of frequency for (a) a broad
range of frequencies and (b) the frequency range of more interest to the
DSN.

II. Analysis of Measurements

The key equations for determining Te, Top, and Tant (Ti switched to the antenna) using calibrated
loads’ noise temperatures [1] are [see Fig. 1(a)]

Te =
Th − YeTc

Ye − 1
(6)

and [see Fig. 1(c)]

Top =
Th + Te

Ya
(7)

where
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Ye = Y-factor power-ratio measurement switching the receiver input between the hot and cold
loads

Ya = Y-factor power-ratio measurement switching the receiver input between the hot load and
the antenna

and, with Eq. (2),

Tant = Top − Te (8)

Combining Eqs. (6) and (7),

Top = (Th − Tc)
Ye

Ya(Ye − 1)
= (Th − Tc)Y (9)

where Y = Ye/[Ya(Ye − 1)].

Equation (9) can be analyzed with Th and Tc defined by either uncorrected (phy) or corrected values
using Planck’s law. The difference between the R-J (phy) and Planck solutions is

∆Top = T phy
op − TPlanck

op (10)

so that

∆Top,% = 100

[
1 − TPlanck

h − TPlanck
c

T phy
h − T phy

c

]
(11)

For the case with Te determined by the configuration shown in Fig. 1(b), where sky temperature is known,
Eqs. (6) and (11) are valid, with the horn plus sky serving as the cold load.

III. Comparison

A plot of ∆Top, percent, is shown in Fig. 3, obtained with Eq. (11), assuming T phy
h = 290 K, with

values of T phy
c of 4, 10, and 80 K, as a function of frequency, up to 100 GHz. The biggest difference for

this range of values occurs at 100 GHz with a 4-K cold load, i.e., with the highest frequencies and the
lowest calibration load temperatures (lowest value for T phy

h ×T phy
c ). Table 1 also shows these differences,

assuming T phy
h = 290 K and T phy

c = 10 K for DSN present frequency values of 8.5 GHz, 32 GHz, and
beyond this at 100 GHz. The small values for ∆Top, percent, at these frequencies are not significant for
DSN system error budgets.

The difference in the antenna temperature solution Tant using the physical versus the Planck noise
temperatures is an increase of 0.24 K at 10 GHz. The corresponding value calculated for Te is decreased
by almost this same amount, about hf/2k. This results in only a very small difference for Top, the sum
of the antenna and receiver noise temperatures. The important key parameter is Top, which determines
the signal-to-noise ratio for signal reception from the spacecraft missions. The differences in Tant and Te

are secondary to the real objective of determining Top.
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Fig. 3. Plot of the ∆Top 
, percent, determinations using calibration load

physical temperatures uncorrected (Tphy ) or corrected (TPlanck  
) for a

range of frequencies and load temperatures.
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Table 1. Difference in Top , percent, using calibration loads at 290 and 10 K
with both loads’ noise temperatures determined by their physical temperature
(R-J) or corrected with Planck’s law.

Frequency, GHz
∆Top, %

8.5 32 100

∆Top, % 4.8 × 10−4 6.8 × 10−3 6.6 × 10−2

IV. Summary

Using the physical temperatures for the calibration loads without Planck’s law correction is simple
and accurate, as indicated in the above examples.

This simplified procedure using only the physical temperature (R-J) noise approximation is recom-
mended for evaluating DSN operational microwave low-noise system operating noise temperatures. This
includes S-band (2.4 GHz) and X-band (8.5 GHz), as well as the upgrade to Ka-band (32 GHz) for
deep-space missions ground communications support.
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